PENGGALIAN KAIDAH ASOSIASI UNTUK MENDAPATKAN MODEL PERILAKU KONSUMEN

Abstract view : 58 times
PDF (Bahasa Indonesia) - 127 times

Abstract


The process of buying and selling will occur if their purchases of goods by the consumer to the trader, both traders in traditional markets, modern, mini market or other small stores. In purchasing goods, consumers usually buy different types of items at once. It is based on the efforts to fulfill the daily basic needs. Data owned by an institution is one of the assets of the institution. Their daily trade transactions will further multiply the number of transaction data. The amount of transaction data so large it could be a problem if traders can not use it wisely. In this study, researchers will utilize a priori algorithm to group data based on the purchase of goods tendency to appear together in a purchase of goods. The method I use in this case is a priori algorithm. Meanwhile, to conduct tests on the a priori algorithm analysis, the authors use data mining software Orange. The end result of this research is the description of consumer behavior towards the purchase of goods, so that could be a reference to the placement of goods in accordance with their preferences purchased by consumers. In this study the authors simply using a priori algorithm, the authors further expected to be able to combine a couple of similar algorithms, in order to produce more accurate information.


Keywords


a priori algorithm; consumen; data mining; transaction

References


Emha Taufiq Luthfi. (2009). Penerapan Data Mining Algoritma Asosiasi Untuk Meningkatkan Penjualan. Seminar, 10(1), 1–21.

Erwin (Jurusan Teknik Informatika, Fakultas Ilmu Komputer, U. S. A. (2009). Analisis Market Basket Dengan Algoritma. Jurnal Generic, 4, 26–30.

Pane, D. K. (2013). Implementasi Data Mining Pada Penjualan Produk Elektronik Dengan Algoritma Apriori ( Studi Kasus : Kreditplus ). Pelita Informatika Budi Darma, valume : I, 25–29. https://doi.org/2301-9425

Siregar, S. R. (2014). IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI ( Studi Kasus : Jumbo Travel Medan ), 152, 152–156.

Studi, P., Informasi, S., Ilmu, F., Universitas, K., & Kuning, L. (2016). PENGGUNAAN ALGORITHMA APRIORI DATA MINING UNTUK MENGETAHUI TINGKATKESETIAAN KONSUMEN ( BRAND LOYALITY ) TERHADAP MEREK KENDERAAN BERMOTOR ( STUDI KASUS DEALER HONDA RUMBAI ), x(x), 44–52.

Tampubolon, K., Saragih, H., Reza, B., Epicentrum, K., Asosiasi, A., & Apriori, A. (2013). Implementasi Data Mining Algoritma Apriori Pada Sistem Persediaan Alat-Alat Kesehatan. Informasi Dan Teknologi Ilmiah, 93–106. https://doi.org/2339-210X

Teknik, J., & Fakultas, E. (2008). Prediksi Mata Kuliah Pilihan dengan Aturan Asosiasi Widodo. Science, 2008, 21–23.

Wandi, N., Hendrawan, R. A., & Mukhlason, A. (2012). Pengembangan Sistem Rekomendasi Penelusuran Buku dengan Penggalian Association Rule Menggunakan Algoritma Apriori. Jurnal Teknik ITS, 1, 1–5.

Widiati, E., & Evita Dewi, K. (2014). Implementasi Association Rule Terhadap Penyusunan Layout Makanan Dan Penentuan Paket Makanan Hemat Di Rm Roso Echo Dengan Algoritma Apriori. Jurnal Ilmiah Komputer Dan Informatika (KOMPUTA), 96(2), 2089–9033.

Yanto, R., & Khoiriah, R. (2015). Implementasi Data Mining dengan Metode Algoritma Apriori dalam Menentukan Pola Pembelian Obat, 2, 102–113. https://doi.org/2354-5771




DOI: https://doi.org/10.22202/jei.2017.v3i2.1258


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Edik Informatika

                       

 

 

Visitors Counter EdikInformatika

Flag Counter